datasheetbank_Logo
전자부품 반도체 검색엔진( 무료 PDF 다운로드 ) - 데이터시트뱅크

CS5421 데이터 시트보기 (PDF) - ON Semiconductor

부품명
상세내역
일치하는 목록
CS5421 Datasheet PDF : 14 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
CS5421
APPLICATIONS INFORMATION
THEORY OF OPERATION
The CS5421 is a dual power supply controller that utilizes
the V2 control method. Two synchronous V2 buck regulators
can be built using a single controller. The fixedfrequency
architecture, driven from a common oscillator, ensures a
180° phase differential between channels.
V2 Control Method
The V2 method of control uses a ramp signal that is
generated by the ESR of the output capacitors. This ramp is
proportional to the AC current through the main inductor
and is offset by the DC output voltage. This control scheme
inherently compensates for variation in either line or load
conditions, since the ramp signal is generated from the
output voltage itself. The V2 method differs from traditional
techniques such as voltage mode control, which generates an
artificial ramp, and current mode control, which generates
a ramp using the inductor current.
PWM
Comparator
GATE(H)
+
GATE(L)
COMP
RAMP
VFFB
Slope
Compensation Error
Amplifier
Error
Signal
+
Output
Voltage
Feedback
VFB
Reference
Voltage
Figure 3. V2 Control with Slope Compensation
The V2 control method is illustrated in Figure 3. The
output voltage generates both the error signal and the ramp
signal. Since the ramp signal is simply the output voltage, it
is affected by any change in the output, regardless of the
origin of that change. The ramp signal also contains the DC
portion of the output voltage, allowing the control circuit to
drive the main switch to 0% or 100% duty cycle as required.
A variation in line voltage changes the current ramp in the
inductor, which causes the V2 control scheme to compensate
the duty cycle. Since any variation in inductor current
modifies the ramp signal, as in current mode control, the V2
control scheme offers the same advantages in line transient
response.
A variation in load current will affect the output voltage,
modifying the ramp signal. A load step immediately changes
the state of the comparator output, which controls the main
switch. The comparator response time and the transition
speed of the main switch determine the load transient
response. Unlike traditional control methods, the reaction
time to the output load step is not related to the crossover
frequency of the error signal loop.
The error signal loop can have a low crossover frequency,
since the transient response is handled by the ramp signal
loop. The main purpose of this ‘slow’ feedback loop is to
provide DC accuracy. Noise immunity is significantly
improved, since the error amplifier bandwidth can be rolled
off at a low frequency. Enhanced noise immunity improves
remote sensing of the output voltage, since the noise
associated with long feedback traces can be effectively
filtered.
Line and load regulation is drastically improved because
there are two independent control loops. A voltage mode
controller relies on the change in the error signal to
compensate for a deviation in either line or load voltage.
This change in the error signal causes the output voltage to
change corresponding to the gain of the error amplifier,
which is normally specified as line and load regulations. A
current mode controller maintains a fixed error signal during
line transients, since the slope of the ramp signal changes in
this case. However, regulation of load transients still requires
a change in the error signal. The V2 method of control
maintains a fixed error signal for both line and load variation,
since the ramp signal is affected by both line and load.
The stringent load transient requirements of modern
microprocessors require the output capacitors to have very
low ESR. The resulting shallow slope in the output ripple
can lead to pulse width jitter and variation caused by both
random and synchronous noise. A ramp waveform
generated in the oscillator is added to the ramp signal from
the output voltage to provide the proper voltage ramp at the
beginning of each switching cycle. This slope compensation
increases the noise immunity particularly at higher duty
cycle (above 50%).
Startup
The CS5421 features a programmable Soft Start function,
which is implemented through the Error Amplifier and the
external Compensation Capacitor. This feature prevents
stress to the power components and overshoot of the output
voltage during startup. As power is applied to the regulator,
the CS5421 Undervoltage Lockout circuit (UVL) monitors
the IC’s supply voltage (VCC). The UVL circuit prevents the
MOSFET gates from switching until VCC exceeds the 8.6 V
threshold. A hysteresis function of 800 mV improves noise
immunity. The Compensation Capacitor connected to the
COMP pin is charged by a 30 μA current source. When the
capacitor voltage exceeds the 0.4 V offset of the PWM
comparator, the PWM control loop will allow switching to
occur. The upper gate driver GATE(H) is activated turning
on the upper MOSFET. The current then ramps up through
the main inductor and linearly powers the output capacitors
and load. When the regulator output voltage exceeds the
COMP pin voltage minus the 0.4 V PWM comparator offset
http://onsemi.com
6

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]