datasheetbank_Logo
전자부품 반도체 검색엔진( 무료 PDF 다운로드 ) - 데이터시트뱅크

ISL976787IBZ-T 데이터 시트보기 (PDF) - Renesas Electronics

부품명
상세내역
일치하는 목록
ISL976787IBZ-T Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
ISL97687
CSEL = 1: The current setting is based on ISET2
This is typically used in 3D systems to provide a higher current
level in 3D modes, but is not restricted to this application. CSEL
can be switched in operation and updates immediately in direct
PWM mode, and at the start of the next PWM dimming cycle in
other modes.
LED DC DIMMING
It is possible to control the LED current by applying a DC voltage
VDIM to the ISET1/2 pin via a resistor as in Figure 21.
ISET
VISET: 1.21V
RISET
RDIM
VDIM
FIGURE 21. LED CURRENT CONTROL WITH VDIM
If the VDIM is above VISET 1.21V, the brightness will reduce, and
vice versa. In this configuration, it is important that the control
voltage be set to the maximum brightness (minimum voltage)
level when the ISL97687 is enabled, even if the LEDs are not lit
at this point. This is necessary to allow the chip to calibrate to the
maximum current level that will need to be supported.
Otherwise, on-chip power dissipation will be higher at current
levels above the start-up level. Dimming with this technique
should be limited to a minimum of 10~20% brightness, as LED
current accuracy is increasingly degraded at lower levels.
LED PWM CONTROL
The ISL97687 provides many different PWM dimming methods.
Each of these results in PWM chopping of the current in the LEDs
of all 4 channels, to provide an average LED current and control
the brightness. During the on-periods, the LED peak current will
be defined by the value of the resistor on ISET1 or ISET2, as
described in Equation 2.
Dimming can either be “direct PWM” mode, where both the
frequency and duty cycle of the LEDs match that of the incoming
PWMI signal, or the duty cycle and frequency sources must be
selected from the following.
SUPPORTED LED DUTY CYCLE SOURCES
• Decoded PWMI pin duty cycle (PWM input mode)
• Decoded ACTL pin voltage (Analog input mode)
• Analog*PWM input mode (Both PWM and Analog inputs are
used)
SUPPORTED LED FREQUENCY SOURCES
• Free running internal oscillator (Internal PWM frequency
mode)
• Frequency can be phase and frequency locked to frame rate
(VSYNC mode)
Additionally, phase shift mode can be enabled in all
configurations except direct PWM, allowing the LED strings to
turn on in sequence.
LED PWM DIMMING IN DIRECT PWM MODE
When the PWM_SET/PLL pin is tied to VDC, the PWMI input
signal is used to directly control the LEDs. The dimming
frequency and phase of the LEDs will be the same as that of
PWMI. This mode can be used to get very high effective PWM
resolution, as the resolution is effectively determined by the
PWMI signal source.
LED PWM DIMMING – DUTY CYCLE CONTROL
In non-direct PWM mode, the ISL97687 can decode the incoming
PWMI duty cycle information at 10-bit resolution and the ACTL
voltage level at 8-bit resolution and apply these values to the
LEDs as a PWM output at a new frequency.
For applications where DC-PWM dimming is required, the analog
dimming mode must be enabled (EN_ADIM = high). The analog
control input pin (ACTL) must then be fed with a voltage of 0.3V
to 3.0V. This is decoded as an 8-bit duty cycle of 0% to 100%
respectively. This interface supports backward compatibility with
CCFL backlight driving systems, but can also be used in other
applications, such as analog ALS interfaces. External circuitry
can be used to shift most analog input ranges to the required
level. Figure 22 is an example that maps a 0V to 3.5V input to
give a 10-100% output range, but this can be tailored to other
requirements. The PWM dimming frequency, set by the
PWM_SET pin, should be at least 1kHz when EN_ADIM is high.
In Analog mode, the decoded 10-bit PWM duty cycle information
from the PWMI pin is also used, multiplied by the 8-bit level
decoded from the ACTL pin. For example, if ACTL = 2.3V (74%)
and PWMI = 50%, then LED dimming will be 74% x 50% = 37%.
For analog dimming applications where this multiplication is not
needed, PWMI should be tied high, giving the ACTL pin full
control over the duty cycle range. For applications where analog
dimming is not needed, EN_ADIM should be low and PWMI
should be driven with the required duty cycle.
FIGURE 22. EXAMPLE OF ACTL INPUT ADJUSTMENT
FN7714 Rev.3.00
Sep 13, 2017
Page 12 of 24

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]