datasheetbank_Logo
전자부품 반도체 검색엔진( 무료 PDF 다운로드 ) - 데이터시트뱅크

AD7693 데이터 시트보기 (PDF) - Analog Devices

부품명
상세내역
일치하는 목록
AD7693 Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
AD7693
Preliminary Technical Data
THEORY OF OPERATION
IN+
REF
GND
MSB
LSB
SWITCHES CONTROL
SW+
32,768C 16,384C
4C
2C
C
C
32,768C 16,384C
4C
2C
C
C
COMP
CONTROL
LOGIC
BUSY
OUTPUT CODE
MSB
LSB SW–
CNV
IN–
Figure 24. ADC Simplified Schematic
CIRCUIT INFORMATION
The AD7693 is a fast, low power, single-supply, precise, 16-bit
ADC using a successive approximation architecture.
The AD7693 is capable of converting 500,000 samples per
second (500 kSPS) and powers down between conversions.
When operating at 1 kSPS, for example, it consumes 40 μW
typically, ideal for battery-powered applications.
The AD7693 provides the user with an on-chip track-and-hold
and does not exhibit pipeline delay or latency, making it ideal
for multiple multiplexed channel applications.
The AD7693 is specified from 4.5 V to 5.5 V and can be
interfaced to any 1.8 V to 5 V digital logic family. It is housed in
a 10-lead MSOP or a tiny 10-lead QFN (LFCSP) that combines
space savings and allows flexible configurations.
It is pin-for-pin compatible with the 16-bit AD7687 and
AD7688 and with the 18-bit AD7690 and AD7691.
CONVERTER OPERATION
The AD7693 is a successive approximation ADC based on a
charge redistribution DAC. Figure 24 shows the simplified
schematic of the ADC. The capacitive DAC consists of two
identical arrays of 16 binary-weighted capacitors, which are
connected to the two comparator inputs.
During the acquisition phase, terminals of the array tied to the
comparator’s input are connected to GND via SW+ and SW−.
All independent switches are connected to the analog inputs.
Thus, the capacitor arrays are used as sampling capacitors and
acquire the analog signal on the IN+ and IN− inputs. When the
acquisition phase is complete and the CNV input goes high, a
conversion phase is initiated. When the conversion phase
begins, SW+ and SW− are opened first. The two capacitor
arrays are then disconnected from the inputs and connected to
the GND input. Therefore, the differential voltage between the
inputs IN+ and IN− captured at the end of the acquisition phase
is applied to the comparator inputs, causing the comparator to
become unbalanced. By switching each element of the capacitor
array between GND and REF, the comparator input varies by
binary-weighted voltage steps (VREF/2, VREF/4 ... VREF/32,768).
The control logic toggles these switches, starting with the MSB,
to bring the comparator back into a balanced condition. After
the completion of this process, the part returns to the
acquisition phase, and the control logic generates the ADC
output code and a busy signal indicator.
Because the AD7693 has an on-board conversion clock, the
serial clock, SCK, is not required for the conversion process.
Rev. PrB | Page 12 of 24

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]