datasheetbank_Logo
전자부품 반도체 검색엔진( 무료 PDF 다운로드 ) - 데이터시트뱅크

LTC3774 데이터 시트보기 (PDF) - Linear Technology

부품명
상세내역
일치하는 목록
LTC3774 Datasheet PDF : 38 Pages
First Prev 21 22 23 24 25 26 27 28 29 30 Next Last
LTC3774
APPLICATIONS INFORMATION
Inductor Core Selection
Once the inductance value is determined, the type of in-
ductor must be selected. Core loss is independent of core
size for a fixed inductor value, but it is very dependent on
inductance selected. As inductance increases, core losses
go down. Unfortunately, increased inductance requires
more turns of wire and therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
PWM and PWMEN Pins
The PWM pins are three-state compatible outputs, de-
signed to drive MOSFET drivers, DRMOSs, etc which do
not represent a heavy capacitive load. An external resistor
divider may be used to set the voltage to mid-rail while in
the high impedance state.
The PWMEN outputs have an open-drain pull-up to INTVCC
and require an appropriate external pull-down resistor.
This pin is intended to drive the enable pins of the MOS-
FET drivers that do not have three-state compatible PWM
inputs. PWMEN is low only when PWM is high impedance,
and high at any other PWM state.
Power MOSFET and Schottky Diode
(Optional) Selection
At least two external power MOSFETs need to be selected:
One N-channel MOSFET for the top (main) switch and one
or more N‑channel MOSFET(s) for the bottom (synchro-
nous) switch. The number, type and on-resistance of all
MOSFETs selected take into account the voltage step-down
ratio as well as the actual position (main or synchronous)
in which the MOSFET will be used. A much smaller and
much lower input capacitance MOSFET should be used
for the top MOSFET in applications that have an output
voltage that is less than one-third of the input voltage. In
applications where VIN >> VOUT , the top MOSFETs’ on-
resistance is normally less important for overall efficiency
than its input capacitance at operating frequencies above
300kHz. MOSFET manufacturers have designed special
purpose devices that provide reasonably low on-resistance
with significantly reduced input capacitance for the main
switch application in switching regulators.
The peak-to-peak MOSFET gate drive levels are set by the
internal regulator voltage, VINTVCC, requiring the use of
logic-level threshold MOSFETs in most applications. Pay
close attention to the BVDSS specification for the MOSFETs
as well; many of the logic-level MOSFETs are limited to
30V or less. Selection criteria for the power MOSFETs
include the on-resistance, RDS(ON), input capacitance,
input voltage and maximum output current. MOSFET input
capacitance is a combination of several components but
can be taken from the typical gate charge  curve included
on most data sheets (Figure 8). The curve is generated by
forcing a constant input current into the gate of a common
source, current source loaded stage and then plotting the
gate voltage versus time.
VIN
MILLER EFFECT
VGS
a
b
QIN
CMILLER = (QB – QA)/VDS
V
+
VGS
+
VDS
3774 F08
Figure 8. Gate Charge Characteristic
The initial slope is the effect of the gate-to-source and
the gate-to-drain capacitance. The flat portion of the
curve is the result of the Miller multiplication effect of the
drain-to-gate capacitance as the drain drops the voltage
across the current source load. The upper sloping line is
due to the drain-to-gate accumulation capacitance and
the gate-to-source capacitance. The Miller charge (the
increase in coulombs on the horizontal axis from a to b
while the curve is flat) is specified for a given VDS drain
voltage, but can be adjusted for different VDS voltages by
For more information www.linear.com/LTC3774
3774f
21

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]